
Divide and Conquer

Algorithm Design
Techniques

Greedy

Divide and Conquer

Dynamic Programming

Network Flows

Algorithm Design

Greedy Divide and
Conquer

Formulate problem ? ?

Design algorithm less work more work

Prove correctness more work less work

Analyze running time less work more work

Divide and Conquer

Divide-and-conquer.
Divide problem into several parts.
Solve each part recursively.
Combine solutions to sub-problems into overall
solution.

Most common usage:
Problem of size n → two equal parts of size n/2
Combine solutions in linear time.

Mergesort

13 17 6 3 9 2 16 1

13 17 6 3 9 2 16 1
13 17 6 3 9 2 16 1

Break up

13 17 3 6 2 9 1 16 Solve

3 6 13 17 1 2 9 16

1 2 3 6 9 13 16 17
Combine

Divide

Combine results

Solve base case

Solve recursively

Mergesort
mergesort(m, low, high) {
 if high == low {
 return

 }
 else if (high == low + 1) {

 sort m[low] and m[high];
 return;

 }
 else {
 middle = length(m) / 2
 mergesort(m, low, middle-1)
 mergesort(m, middle, high)
 return merge(m, low, middle, high)
 }
}

Mergesort
mergesort(m, low, high) {
 if high == low {
 return

 }
 else if (high == low + 1) {

 sort m[low] and m[high];
 return;

 }
 else {
 middle = length(m) / 2
 mergesort(m, low, middle-1)
 mergesort(m, middle, high)
 return merge(m, low, middle, high)
 }
}

Complexity?

Base case - O(1)
Divide - O(1)
Recursive cases ??
Merge - O(n)

Accounting:
Merge Sorted Lists

Input: sorted lists A = a1,a2,…,an and B =
b1,b2,…,bn
Output: combined sorted list

Accounting:
Merge Two Sorted Lists

i = 1, j = 1
while (both lists are nonempty) {
 if (ai ≤ bj) {

append ai to output list
increment i

}
 else {

append bj to output list
increment j

}

}
append remainder of nonempty list
to output list

Accounting scheme:
each entry from
input list is touched
once
→ O(n)

mergesort Recurrence
Relation

T(n) = running time for input of size n

T(n) ≤ 2 T(n/2) + cn when n > 2

T(2) ≤ c

Problem: How do we solve this for a O() value?

Generalized Recurrence
Problem

Instead of dividing the problem into 2
subproblems, divide it into q subproblems.

Still have linear cost for the divide and
merge steps combined.

Consider 2 cases:
q = 1
q > 2

Summary
Divide and conquer where:

O(n) work is done for divide and merge
combined
Subproblems have size n/2

One subproblem on each recursion => O(n)

2 subproblems on each recursion => O(n log n)

>2 subproblems on each recursion => O(nlog q)

